
IRremote Library
IRremote, by Ken Shirriff, allows you to receive or transmit Infrared Remote
Control codes. You can make your projects controlled by a remote, or make
them control other devices like televisions and stereo components.

Download: IRremote.zip (modified to work on Teensy and other boards)

Hardware Requirements
For transmitting, a single Infrared LED and resistor are needed. For receiving,
an IR receiver module with internal bandpass filter is needed.

TODO: Add part numbers of known-good infrared LEDs and receivers. The
LED in this photo is Lumex OED-EL-8L (Digikey 67-1000-ND) and the
receiver is probably Sharp GP1UD281YK0F (now discontinued, Digikey 425-
1987-ND).

TODO: Test Vishay TSOP39338 receiver (Digikey 751-1390-5-ND). It's very
likely to work. Update this photo. Maybe PJRC should sell a known-good LED
& receiver pair?

For transmitting, you must connect the LED to a specific pin. The receiver
output may be connected to any pin.

http://www.arcfn.com/search/label/ir
https://www.pjrc.com/teensy/arduino_libraries/IRremote.zip

Board
Receive

Pin
Transmit

Pin
Timer
Used

PWM Pins
Disabled

Teensy 3.1 Any 5 CMT None
Teensy 3.0 Any 5 CMT None
Teensy 2.0 Any 10 4 12
Teensy 1.0 Any 17 1 15, 18
Teensy++ 2.0 Any 1 2 0
Teensy++ 1.0 Any 1 2 0

Basic Usage
IRremote acts like 2 libraries, one for sending and one for receiving. Usually
it's easiest to find the codes to transmit by first using the receiver.

Receiving
IRrecv irrecv(receivePin)

Create the receiver object, using a name of your choice.

irrecv.enableIRIn()

Begin the receiving process. This will enable the timer interrupt which consumes a small
amount of CPU every 50 µs.

irrecv.decode(&results)

Attempt to receive a IR code. Returns true if a code was received, or false if nothing
received yet. When a code is received, information is stored into "results".
results.decode_type: Will be one of the following: NEC, SONY, RC5, RC6,
or UNKNOWN.
results.value: The actual IR code (0 if type is UNKNOWN)
results.bits: The number of bits used by this code
results.rawbuf: An array of IR pulse times
results.rawlen: The number of items stored in the array

irrecv.resume()

After receiving, this must be called to reset the receiver and prepare it to receive another
code.

irrecv.blink13(true)

Enable blinking the LED when during reception. Because you can't see infrared light,
blinking the LED can be useful while troubleshooting, or just to give visual feedback.

Transmitting
IRsend irsend;

Create the transmit object. A fixed pin number is always used, depending on which timer
the library is utilizing.

irsend.sendNEC(IRcode, numBits);

Send a code in NEC format.

irsend.sendSony(IRcode, numBits);

Send a code in Sony format.

irsend.sendRC5(IRcode, numBits);

Send a code in RC5 format.

irsend.sendRC6(IRcode, numBits);

Send a code in RC6

irsend.sendRaw(rawbuf, rawlen, frequency);

Send a raw code. Normally you would obtain the contents of rawbuf and rawlen by using
the receiver many times and averaging the results. Some adjustments may be necessary
for best performance. The frequency is the expected bandpass filter frequency at the
receiver, where 38 is the most commonly used.

Example Program - Receive

#include <IRremote.h>

const int RECV_PIN = 6;

IRrecv irrecv(RECV_PIN);

decode_results results;

void setup()
{
 Serial.begin(9600);
 irrecv.enableIRIn(); // Start the receiver
 irrecv.blink13(true);

}

void loop() {
 if (irrecv.decode(&results)) {
 if (results.decode_type == NEC) {
 Serial.print("NEC: ");
 } else if (results.decode_type == SONY) {
 Serial.print("SONY: ");
 } else if (results.decode_type == RC5) {
 Serial.print("RC5: ");
 } else if (results.decode_type == RC6) {
 Serial.print("RC6: ");
 } else if (results.decode_type == UNKNOWN) {
 Serial.print("UNKNOWN: ");
 }
 Serial.println(results.value, HEX);
 irrecv.resume(); // Receive the next value
 }
}

Example Program - Transmit
#include <IRremote.h>

IRsend irsend;

void setup() {
}

void loop() {
 irsend.sendSony(0x68B92, 20);
 delay(100);
 irsend.sendSony(0x68B92, 20);
 delay(100);
 irsend.sendSony(0x68B92, 20);
 delay(300000);
}

Timer Usage
IRremote requires a timer for both transmitting and receiving. If you wish to
use another library that requires the same timer, you can edit IRremoteInt.h to
make IRremote use a different timer.

	IRremote Library
	Hardware Requirements
	Basic Usage
	Receiving
	Transmitting

	Example Program - Receive
	Example Program - Transmit
	Timer Usage

